Меню
Назад » »

Послушник Олег Петренко / УВЕРЕНИЕ ФОМЫ (3)

Окружающий нас мир обладает точно организованным порядком, хорошими примерами которого в различных пространственных масштабах могут служить как кристаллические решетки твердых тел, так и само строение Солнечной системы. Именно строгому порядку и продуманной иерархии, так ярко выразившимися в симметрии кристаллических решеток, мы обязаны дивным по красоте кристаллам самоцветов и, в целом, наличию неживой материи во всем ее многообразии. Порядок же во времени можно увидеть в любом естественном периодическом процессе - будь то колебания атомов или смена дня и ночи. При всей необычайной сложности организации материи, особенно живой, структура природы в пространстве и времени обладает также удивительной по красоте простотой. Вселенной чужда расточительность. Специальное научное исследование показало, что мир, в котором имеется в том или ином виде химия, нельзя построить на основе взаимодействий и полей с более простыми свойствами, нежели у тех, которые реально существуют [20]. Гармония и чудесная стройность всего мироздания обусловлены подчиненностью его строгим правилам - физическим законам, положенным Творцом в основание Вселенной. Удивительнейшим фактом следует считать возможность формулирования этих законов природы с помощью математического кода. Им описывается все существующее: от атомных ядер до всей Вселенной в целом. Чтобы получить возможность понимать и предсказывать ход процессов в той или иной физической системе, достаточно "разгадать" соответствующий ей код. Таким образом, видимый физический мир становится доступен для нашего познания его с помощью научного метода. Творец создал весь мир в своем совершенном великолепии. Поэтому управляющие им законы просто не могут быть "некрасивыми". Действительно, все фундаментальные законы в своих математических формулировках имеют очень стройный и простой вид. У ученых существует даже предубеждение против длинных и сложных формул, ибо таковые чаще всего оказываются неверными. Существующие природные явления и физические взаимодействия - электромагнитное, гравитационное, слабое и сильное характеризуются определенной силой, масштаб которой определяется так называемыми фундаментальными постоянными - a, aG, aw и as соответственно. К их числу также относятся скорость света c, элементарный электрический заряд e (заряд электрона), массы субатомных частиц, постоянная Планка h и некоторые другие. Эти константы природы подчиняются строгому принципу независимости их значений от времени и от положения в пространстве, что подтверждается сегодня целым комплексом экспериментальных данных. Астрофизические наблюдения свидетельствуют об отсутствии каких-либо изменений величин фундаментальных констант с точностью до 10-11 за год [21]. Геофизические данные, полученные на основе урановых месторождений в Окло (Африка), дают еще более точную оценку их стабильности . Как свидетельствует современная фундаментальная физика, окружающий нас мир очень "чувствителен" к численным значениям универсальных мировых констант, поскольку все основные особенности реального мира: размеры ядер, атомов, планет, звезд и т. д.- в конечном итоге определяются величинами фундаментальных постоянных. Само существование мира обусловлено выполнением очень жестких соотношений между ними. Ничтожные, с человеческой точки зрения, отклонения от наблюдаемой удивительно сложной и невероятно точной числовой соразмеренности значений мировых констант привели бы к фатальным последствиям для существующей Вселенной. Ее природа была бы такова, что в ней невозможна была бы жизнь. Вот почему для сохранения условий ее существования так необходимы незыблемость и устойчивость всего мироздания, о которых и свидетельствует неизменность фундаментальных констант. Задолго до появления научных методов познания природы христианский мир не сомневался в надежности ее "конструкции". Ибо, как гласит Священное Писание устами ветхозаветного царя Давида, утвердил Творец Вселенную, "яже не подвижится" (Пс.92,1), в которой "все расположил мерою, числом и весом" (Прем.11,21), и населил ее живыми Своими творениями - "вся премудростию сотворил"(Пс.103,24)! Факты, которые в силу своей объективности не несут никакой идеологической нагрузки, требуют признать отсутствие в природе слепых сил. Гармония мироздания, построенного на невероятно точном расчете, с непреложной силой свидетельствует о разумной, направляющей "руке" Творца. Существует только одна возможность научно объяснить столь точно рассчитанную под возможность появления и развития жизни структуру окружающего мира, которая основана не на фундаментальной физике, а скорее на "биологии", и получила название "антропного принципа". Этот принцип гласит, что Вселенная приспособлена для существования жизни и что как законы физики, так и начальные условия подобраны таким образом, чтобы гарантировать ее появление [24]. В конце XX века все отчетливее становится виден Божественный план устройства мироздания, поскольку на определенном этапе развития знаний наука начинает отвечать уже не только на вопрос "как" устроен окружающий нас мир, но и недвусмысленно указывать на причину его появления. "Ибо невидимое Его, вечная сила Его и Божество, от создания мира через рассматривание творений видимы" (Рим.1,20). "Бездушные" формулы и цифры красноречивее всяких слов сегодня вопиют о старой библейской истине, что Бог сотворил мир, чтобы люди населяли его. Перейдем же теперь к детальному рассмотрению свидетельств фундаментальной науки. 7.1 Вся наблюдаемая нами Вселенная с ее невообразимо сложной организацией была создана буквально из ничего. В первоначальный момент возникли пространство и время, составляющие неотъемлемую сущность физического мира. Вся Вселенная при этом представляла собой некое вакуумоподобное состояние с огромной плотностью энергии и занимала область пространства с крохотными размерами - около 10-33 см, из которой по заданным Творцом законам внутреннего развития и образовался весь мир. Его структура обладает рядом удивительных свойств. Во-первых, вещество и излучение в нем в большом масштабе распределено чрезвычайно однородно и изотропно. Надежным свидетельством этого служит регистрируемое на Земле фоновое реликтовое излучение, на котором любая крупномасштабная неоднородность Вселенной оставила бы свой отпечаток. Однако, как свидетельствуют современные измерения, его температура, составляющая всего около 2,7К, меняется менее, чем на 1/30000 часть в пределах нескольких угловых градусов на небесной сфере [25]. Вторым не менее удивительным фактом является расширение Вселенной, которое всюду происходит поразительно равномерно. Современная температура фонового излучения требует, чтобы в самый ранний момент после так называемого "Большого взрыва" (до 10-43 сек) его темп сохранялся одинаковым независимо от направления с потрясающей точностью до 10-40. Это расширение в первом приближении пропорционально расстоянию между двумя типичными скоплениями галактик и, следовательно, чем дальше галактики находятся друг от друга, тем выше скорость их взаимного удаления. Наблюдаемый процесс увеличения объема Вселенной невозможно представить себе как следствие обычного взрыва. Взрыв не приводит к равномерному распределению вещества по объему. Более того, сила, действующая на осколки вещества при обычном взрыве, вызывается разностью давлений. Однако Вселенная - это все, что существует в материальном мире. Вне ее границ нет ничего - ни какой-либо материи, ни пространства, ни времени, т. е. нет той "пустоты", в которую можно было бы расширяться! Поэтому само понятие разности давлений неприменимо в этом случае. Скорее подходит аналогия равномерно раздувающегося воздушного шара, на поверхности которого нанесены точки, изображающие галактики. Когда шар раздувается,- его оболочка растягивается, и расстояния между точками увеличиваются. При этом сами точки на поверхности остаются без движения. Таким образом, само пространство между галактиками, растягиваясь, раздвигает их относительно друг друга. Однако расширение Вселенной никак не влияет на отдельные тела. Точно так же, как в разлетающемся облаке газа отдельные молекулы не расширяются. Если бы расширялись пропорционально размерам абсолютно все тела, включая и атомы, то это расширение было бы ненаблюдаемо, поскольку не существовало бы неизменного эталона, относительно которого такое расширение могло бы быть зарегистрировано. Следует отметить, что теория "Большого взрыва" никак не объсняет причину расширения Вселенной - оно в модели заложено изначально в качестве аксиомы. С каждым днем доступная нашим телескопам область Вселенной возрастает на 1018 кубических световых лет, свидетельствуя тем самым о непрерывном рождении или растягивании пространства [20]. Таким образом, и до сего дня мы являемся свидетелями продолжающегося "чуда" творения мира - увеличения его размеров. В рамках же сценария "инфляционного" расширения Вселенной (см. подробнее п. 7.6) проблема роста размеров Вселенной решается с помощью введения понятия однородного скалярного поля, которое должно заполнять все пространство [26]. Для удовлетворения всем требованиям, выдвигаемым наблюдательными данными, потенциал такого поля должен иметь чрезвычайно специфический вид. Практически проблема причины расширения Вселенной в инфляционной модели заменяется на необходимость каким-либо образом объяснить существование скалярного поля, обладающего к тому же столь неординарными свойствами. Последнее пока остается за рамками современной космологии. Итак, скопления галактик в среднем равномерно заполняют всю Вселенную. Однако в масштабе самих скоплений обнаруживается чрезвычайная неоднородность распространения материи в виде отдельных галактик. Чтобы хоть каким-нибудь образом объяснить такую специфичность структуры Вселенной, ученым потребовалось постулировать в качестве начальных условий своевременное появление значительных неоднородностей плотности уже в самом начале ее расширения. Какие-то малые отклонения от однородности должны были быть. Иначе вещество не распалось бы на части, а, расширяясь, превратилось бы в однородный холодный газ, равномерно заполняющий все пространство. Эти неоднородности должны были появиться в надлежащем месте и в нужное время, при этом их величины не должны были превышать определенных значений, чтобы не произошел гравитационный коллапс Вселенной. "Тайна" происхождения Вселенной еще более парадоксальна, чем может показаться на первый взгляд. Тщательные измерения скорости расширения Вселенной свидетельствуют о ее чрезвычайной близости к критическому значению, при котором Вселенная способна преодолеть собственную гравитацию и расширяться вечно. Допустимый интервал для возможного значения скорости чрезвычайно узок, поскольку небольшое изменение ее величины в меньшую или большую стороны привели бы к катастрофическим последствиям для жизни - Вселенная либо "схлопнулась", либо вещество в ней давно бы полностью рассеялось. Теоретический анализ показывает, что если бы в момент времени, соответствующий 1 секунде после "Большого взрыва", когда картина расширения уже полностью определилась, скорость расширения отличалась бы от реального значения более чем на 10-18 доли своей величины, то этого бы оказалось вполне достаточным для неотвратимого нарушения тонкого баланса [20]. Таким образом, "Большой взрыв" имел совершенно определенную, точно рассчитанную силу, соотвествовавшую гравитационному взаимодействию с невероятной точностью. Но можно ли рассматривать столь точно сбалансированный его сценарий в качестве лишь слепой игры случая?! Следует отметить, что в рамках инфляционной модели проблема появления первоначальных неоднородностей, как и проблема расширения Вселенной, сводится к задаче подбора определенного вида потенциала скалярного поля. Его весьма специфический вид можно объяснить разве что исходя из антропного принципа, который, вообще говоря, является просто не совсем удачным синонимом воли Всевышнего. Поскольку сам человек, появившийся через 1010 лет после того как основные черты нашего мира уже сформировались, никак не мог повлиять ни на структуру Вселенной, ни на свойства элементарных частиц в ней. 7.2 Такой, на первый взгляд, далекий от космологии раздел физики, изучающий микромир, в действительности самым тесным образом связан не только со строением Вселенной, но и с самим фактом ее существования. Чрезвычайно важную роль во Вселенной в силу своей многочисленности играет очень легкая частица нейтрино, масса покоя которой приблизительно на пять порядков величины меньше массы электрона. Если масса нейтрино была бы всего лишь в 10 раз больше, то есть составляла бы величину порядка 10-34 кг, то такая крошечная добавка привела бы к тому, что современная Вселенная претерпевала бы сжатие. Само строение галактик было бы совсем другим, оно не позволило бы "создаться" необходимым условиям для возникновения жизни [27, 28]. Вселенная образовалась с небольшим перевесом (около одной миллиардной доли) обычного вещества над антивеществом. После их взаимной аннигиляции на ранней стадии развития мира оставшаяся материя послужила сырьем для образования и галактик, и разумных существ. Этот изначальный избыток обычного вещества является одним из исходных параметров, характеризующих рождение Вселенной. Если бы этот параметр выражался бы другим числом, то и Вселенная была бы другой . Загадочная с точки зрения физики крохотная асимметрия между веществом и антивеществом обусловлена Божественным замыслом, приведшим к возникновению и существованию жизни. Элементный состав Вселенной обусловлен рядом удивительных числовых совпадений физики микромира. Одно из них связано с поразительным числовым соответствием между фундаментальной постоянной слабого взаимодействия aw, ответственной за превращения элементарных частиц, с одной стороны и определенной комбинацией гравитационной постоянной aG с массами электрона и протона - me и mp соответственно, с другой [27]. Второе "случайное" совпадение выражается в том, что разность масс нейтрона и протона Dmnp - элементарных частиц, составляющих ядра всех атомов,- лишь немногим превосходит массу электрона и составляет величину около 10-30 кг. Если эти две "случайные" числовые зависимости учесть при анализе условий прекращения реакций взаимного превращения протонов и нейтронов, протекавших на ранней, горячей стадии эволюции Вселенной, то можно получить один из главных фундаментальных мировых параметров - количественное соотношение нейтронов и протонов во Вселенной. Детальные расчеты дают значение содержания нейтронов около 10% от общего количества тяжелых частиц [29]. Все эти нейтроны, объединившись с таким же количеством протонов, пошли на образование a частиц - ядер гелия. Таким образом, основной элемент во Вселенной - водород образован оставшимися протонами, на которых не хватило нейтронов. Роль водорода чрезвычайно важна - без него просто не могли бы cуществовать планеты, подобные Земле с ее огромными океанами, не было бы органических веществ и воды. Еще более существенно то, что водород является топливом для большинства обычных устойчивых звезд, таких, как наше Солнце. Наша же звезда светит благодаря последовательности ядерных реакций, которая начинается реакцией синтеза с образованием дейтрона - простейшего ядра, состоящего из протона p и нейтрона n . Если бы величина постоянной сильного взаимодействия as была бы на 5% меньше, то дейтрон не мог бы существовать, поскольку кинетическая энергия ядра превосходила бы энергию связи нейтрона и протона [29]. Следовательно, не могли бы существовать и устойчивые долгоживущие звезды. К пагубным последствиям для всего живого привело бы и гипотетическое небольшое (всего на 2%) увеличение величины константы as. В этом случае стало бы возможным протекание ядерной реакции с образованием ядер гелия с катастрофически быстрым расходом водорода [30]. Таким образом, все ядра водорода во Вселенной были бы израсходованы в ходе "Большого взрыва". Ни о какой жизни в подобной Вселенной, где, в частности, не было бы воды, не может идти и речи. Не лишним будет также упомянуть и об идеальном "подборе" значений масс для элементарных частиц, что особенно заметно проявляется при гипотетическом варьировании их величин. Так, если бы разность масс нейтрона и протона составляла только одну треть своего значения, то не смог бы образоваться водород, столь необходимый для возникновения жизни во Вселенной. Увеличение же этой разности вдвое привело бы к невозможности существования дейтрона как стабильной частицы и, следовательно, нуклеосинтеза в недрах звезд. К аналогичным радикальным последствиям приводит небольшое (приблизительно вдвое) утяжеление и массы самой легкой заряженной частицы электрона [31]. Более того, если бы масса нейтрона была бы меньше своего значения всего на 0,2%, то атомов не было бы вовсе, поскольку свободные протоны могли бы распадаться на нейтроны с излучением позитронов[27]! Однако протон является самой стабильной из всех известных тяжелых частиц, его время жизни по современным оценкам составляет 1035 1040 лет [26]. В человеческом же теле насчитывается около 1029 протонов. Это означает, что в течении всей жизни ни одна такая частица в человеческом организме распасться не может. Если бы протоны не были бы столь стабильными, то ионизация, произведенная их распадами, представляла бы угрозу для существования живых существ. В первые минуты, последовавшие после начала расширения Вселенной, просходил синтез легких элементов. Точно "запрограммированные" длительность и темп ядерных реакций обусловили ту "счастливую случайность", благодаря которой мы существуем. Действительно, то, что около 94% атомов космического вещества приходится на долю водорода, а подавляющая часть остальных 6% состоит из гелия , связано с прекращением реакций взаимных превращений тяжелых частиц протонов и нейтронов через время t " 1 сек после момента рождения Вселенной. Эти реакции чувствительны не только к скорости падения температуры, но и определяются значением фундаментальной постоянной слабого взаимодействия aw . Если бы эти реакции прекратились несколько раньше (при t " 0,1 сек) или несколько позже (при t " 1000 сек), то подавляющая часть вещества в результате состояла бы из гелия (около 80%) или водорода (около 100%) соответственно [31,32]. Однако и существенно меньший дисбаланс привел бы совсем к иному химическому составу Вселенной. Столь благоприятное для возникновения жизни во Вселенной соотношение концентраций гелия и водорода обусловлено "причудливой игрой" различных факторов. Это в первую очередь связано с временем жизни свободного нейтрона tn ~ 1000 сек. Оно существенно превышает время наиболее эффективного нуклеосинтеза гелия (a частиц), наступившего приблизительно на 200 й секунде существования Вселенной, и поэтому распадом нейтрона можно практически пренебречь[31]. Однако ситуация кардинально изменилась бы, если бы параметры, определяющие время tn, имели несколько иные значения . Если бы значение одного из этих параметров - константы слабого взаимодействия aw - было бы на порядок больше реальной величины, то оказалось бы, что tn ~ 10 сек и практически ко времени осуществления нуклеосинтеза нейтронов не нашлось бы. Концентрация гелия во Вселенной в таком случае была бы равной нулю. Аналогичная ситуация возникла бы при увеличении разности масс нейтрона и протона Dmnp примерно вдвое. Таким образом, не только существование одних из наиболее важных макроскопических структур природы - звезд, сжигающих водород, но и весь химический состав Вселенной обусловлен удивительной согласованностью численных значений фундаментальных констант из столь различных разделов физики! 7.3 Вещество, из которого первоначально образовались галактики, состояло из водорода и гелия. Все же другие более тяжелые элементы, согласно современным представлениям, синтезируются в недрах звезд. Взрыв сверхновой разбрасывает обогащенное тяжелыми элементами вещество по галактике, которое служит сырьем для образующихся новых поколений звезд и планет. Таким образом, без взрывов сверхновых планеты земного типа просто не могли бы существовать. Поскольку и железо, образующее ядро нашей планеты, и углерод, являющийся основой всего живого, и другие элементы синтезировались задолго до появления Солнечной системы и послужили для нее готовым "строительным материалом". Оказалось, что способность звезды взорваться очень чувствительна к величине константы слабого взаимодействия. Небольшое изменение последней как в б'ольшую, так и в меньшую сторону привело бы к невозможности появления сверхновых и, следовательно, в конечном счете и нашей планеты. Но и сам процесс синтеза, например, такого важного для земной формы жизни элемента, как углерод, хитроумно "запрограммирован" на успех. Значение тепловой энергии ядер в недрах типичных звезд, участвующих в реакции образования углерода, лежит почти точно в максимально благоприятной области для эффективного его синтеза. Это связано с существованием так называемых ядерных резонансов. Вероятность образования того или иного ядра чрезвычайно сильно - резонансным образом - зависит от того, насколько точно совпадают энергии взаимодействующих ядер. Еще по одной счастливой для возникновения жизни во Вселенной "случайности" резонансная энергия ядер кислорода лежит гораздо ниже тепловой энергии ядер в звездах [33]. Последнее не дает возможности углероду полностью "сгореть" с образованием кислорода. Расположение же ядерных резонансов определяется фундаментальными взаимодействиями, особенно - сильным ядерным и электромагнитным. Не будь силы этих взаимодействий так точно рассчитаны и соразмерены, то и жизнь, по крайней мере земного типа, была бы невозможна . 7.4 Сверхточная подстройка количества вещества во Вселенной От физики микромира обратимся к макрообъектам - звездам. Масса таких стабильных звезд, как Солнце, попадает в узкий интервал значений между массами так называемых "голубых гигантов" и "красных карликов". Это обстоятельство связано с выполнением определенного соотношения между соответствующими постоянными гравитации и электромагнетизма для типичных, стабильных звезд . Даже ничтожное отклонение любой из этих постоянных на значение порядка 10-40 его величины привело бы к нарушению этого соотношения и, следовательно, к невозможности существования стабильных звезд [34]. Стабильные же звезды составляют подавляющую (более 99%) часть от общего их количества в Галактике [31]. Безотносительно к указанному соотношению величина гравитационной постоянной как бы специально подобрана строго определенным образом. Это касается и возможности образования небесных тел (в мире, где гравитация была бы чуть слабее, могло бы не быть планет), и судьбы всей Вселенной. Если бы гравитационная постоянная была бы чуть больше, то Вселенная уже не существовала бы. Вообще судьба Вселенной очень чувствительна не только к величине гравитационной постоянной, но и к средней плотности вещества в ней r. Если эта плотность выше некоторого критического значения rcr " 2 . 10-29 г/см3 [26] , то Вселенная в конечном счете будет сжиматься. Дополнительная гравитация, связанная с избытком плотности вещества по сравнению с критической, будет притягивать галактики обратно друг к другу. И наоборот, при средней плотности вещества, меньшей критической величины, Вселенная будет открытой - вечно и беспрепятственно расширяться. Модельные расчеты показывают, что "природа" выбрала практически строгое равенство r @ rcr, ибо только в этом случае Вселенная смогла бы "дожить" до своего возраста [35]. Это означает также и то, что пространство является плоским, то есть его кривизна k @ 0. Но плоская, псевдоевклидова геометрия пространства-времени обусловлена не только соображениями возраста Вселенной, поскольку это единственно возможная геометрия, в которой могут выполняться фундаментальные законы сохранения энергии-импульса и момента количества движения материи [36]. Эти физические законы лежат в основе устройства всех существующих видов материи, в том числе и живой ее формы. Таким образом, с точки зрения возможности существования человека во Вселенной, выполнение равенства r @ rcr следует признать необходимым условием. Что же говорят об этом наблюдательные данные? Достаточно хорошо измерена плотность вещества излучающих областей галактик, которая оказалась равной приблизительно 0,1 rcr. Но из этого факта преждевременно делать заключение об открытости Вселенной. Сегодня отсутствуют методы регистрации "темного" неизлучающего вещества. Есть серьезные основания полагать, что истинная плотность вещества существенно выше. Это связано с хорошо установленным фактом стационарности большей части скоплений галактик. Для обеспечения этой стационарности необходимо удовлетворить условию равновесия (теорема вириала), которое позволяет оценить массу скоплений галактик. Определенная таким образом плотность вещества оказывается примерно на порядок больше значения, определенного по излучению скоплений галактик и, следовательно, r @ rcr [31]. Современные теоретические расчеты показывают, что в самую раннюю эпоху существования Вселенной это равенство должно было выполняться с точностью по крайней мере не хуже 10 60. Если бы эта точность была бы чуть меньше, "всего лишь" 10-57, то Вселенная не "дожила" бы до современной эпохи, а коллапсировала бы несколько миллионов лет спустя после начала расширения. Ясно, что при отсутствии целенаправленного воздействия, "слепая природа" могла бы выбрать любое значение плотности вещества. Поэтому такая ошеломляющая близость ее к критическому значению является одной из величайших "загадок" космологии [35]. Однако никак нельзя отмахнуться от очевидного факта существования галактик, который предполагает отличие кривизны пространства от нуля на относительно малом характерном размере скоплений галактик. Только в космологических масштабах значение k действительно так близко к нулю, как и средняя величина плотности вещества во Вселенной к его критическому значению. Что же это за "таинственный" принцип, согласно которому, с одной стороны, в среднем кривизна пространства так мала для обеспечения чрезвычайной устойчивости Вселенной и ее плоской геометрии, а с другой - k еще локально достаточно велико для возможности существования отдельных галактик?! 7.5 В список наиболее трудных вопросов, стоящих перед современной физикой, входит и так называемая проблема энергии вакуума или космологической постоянной. Вакуум, или пустое пространство, не является синонимом отсутствия всякой активности. Согласно квантовой теории, вакуум содержит неограниченное количество различных чрезвычайно короткоживущих частиц, называемых виртуальными. Они способны участвовать в сложных процессах взаимодействия и гравитировать подобно обычному веществу. Поэтому в уравнения гравитационного поля в общей теории относительности должен входить дополнительный член, называемый космологической постоянной L и связанный с квантовой поправкой вакуума, в которую вносят свою лепту разнообразные виды виртуальных частиц. Однако, к удивлению исследователей, экспериментальные данные свидетельствуют о почти полном отсутствии вклада в общую гравитацию от такой квантовой поправки. Ожидаемое же ее значение должно было быть приблизительно на пятьдесят порядков величины больше, чем максимальный предел, который следует из наблюдений и обусловлен как ошибкой измерений, так и чувствительностью регистрирующей аппаратуры [27, 38]. До появления "инфляционной" модели расширения Вселенной (см. п. 7.6) считалось, что такое практически нулевое значение квантовой поправки вакуума связано с существованием космического отталкивания между массами, которое в точности и уравновешивает постоянную L. Причем такая их взаимная компенсация должна была бы происходить с невероятной точностью - до 10-53 м-2. Если бы она была всего на один порядок хуже, то это привело бы к совершенно иному устройству Вселенной, в которой отсутствовали бы условия для возникновения жизни. Поскольку вклад вакуума определяется параметрами физики микромира - фундаментальными постоянными гравитации и слабого взаимодействия, то, следовательно, это означает, что и значения этих фундаментальных постоянных должны были бы быть "подогнанными" под необходимые величины с той же фантастической точностью . Изменение последних всего на 1/1040 величины исходных значений в ту или иную сторону привело бы к таким радикальным последствиям, как абсолютной невозможности образования галактик вследствие чрезвычайно быстрого разлета вещества или, соответственно, к катастрофическому гравитационному коллапсу Вселенной [38].
Никто не решился оставить свой комментарий.
Будь-те первым, поделитесь мнением с остальными.
avatar